This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Sulfur Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713926081

Reactions with hydrazonoyl halides 46 1: Synthesis of some new 2,3-dihydro-1,3,4-thiadiazoles and triazolino[4,3-a]pyrimidines as antimicrobial agents

Soad M. Abdel-Gawad ${ }^{\text {a }}$; Marwa S. Elgendy ${ }^{\text {a }}$; Abdou O. Abdelhamid ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt ${ }^{\text {b }}$
Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt

To cite this Article Abdel-Gawad, Soad M. , Elgendy, Marwa S. and Abdelhamid, Abdou O.(2005) 'Reactions with hydrazonoyl halides 46 1: Synthesis of some new 2,3-dihydro-1,3,4-thiadiazoles and triazolino[4,3-a]pyrimidines as antimicrobial agents', Journal of Sulfur Chemistry, 26: 1, $21-31$
To link to this Article: DOI: 10.1080/17415990512331334883
URL: http://dx.doi.org/10.1080/17415990512331334883

PLEASE SCROLL DOWN FOR ARTICLE

[^0]
Research Article

Reactions with hydrazonoyl halides 46 [1]: Synthesis of some new 2,3-dihydro-1,3,4-thiadiazoles and triazolino[4,3-a]pyrimidines as antimicrobial agents

SOAD M. ABDEL-GAWAD \dagger, MARWA S. ELGENDY \dagger and ABDOU O. ABDELHAMID* \ddagger
\dagger Department of Chemistry, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
\ddagger Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt

(Received 14 September 2004; in final form 4 November 2004)

Abstract

2,3-Dihydro-1,3,4-thiadiazoles and triazolino[4,3-a]pyrimidines were synthesized in a good yields from reactions of hydrazonoyl halides with alkyl carbodithioate and pyrimidine-2-thione, respectively. All structures of the newly synthesized compounds were elucidated by elemental analysis, spectral data and alternative synthesis methods. Some of the new compounds were tested against bacteria and some fungi.

Keywords: 1,3,4-Thiadiazolines; Hydrazonoyl halides; Triazolino[4,3-a]pyrimidines; 1,3-Dipolar cycloaddition

1. Introduction

It has been reported that heterocyclic compounds containing the naphthalene nucleus are useful as antibacterial [2, 3], antimalarial [4], and anticancer agents [5]. Also, 1,3,4-thiadiazole derivatives have become very useful compounds in medicine, agriculture, and many fields of technology [6]. In continuation of an interest in the chemistry of thiadiazole systems we would like to report on some new heterocyclic systems containing a naphthalene nucleus, a combination that is expected to possess high biological activity.

2. Results and discussion

Treatment of 1-naphthalenecarbaldehyde 1a with the appropriate methyl hydrazinecarbodithioate 2a or benzyl hydrazinecarbodithioate $\mathbf{2 b}$ in propan-2-ol gave methyl N^{\prime}-(naphthalen-1-yl)ethylenehydrazinecarbodithioate 3a and benzyl N^{\prime}-(naphthalen-1yl)ethylenehydrazinecarbodithioate 4a. Structures 3a and 4a were confirmed by elemental

[^1]
Journal of Sulfur Chemistry

ISSN 1741-5993 print/ISSN 1741-6000 online © 2005 Taylor \& Francis Group Ltd
analysis, spectral data, and chemical transformation. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ showed signals at $\delta=2.00(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.96(\mathrm{~m}, 7 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, and $11.20(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$. Treatment of C-ethoxycarbonyl- N-phenylformohydrazonoyl chloride $\mathbf{5 a}$ with 3a in ethanolic triethylamine solution furnished exclusively one product (as evidenced by TLC) whose structure could be assigned as any of 8a, 9a or 10a (Scheme 1).

SCHEME 1

Elemental analyses, spectral data, and alternative synthesis are in agreement with the formation of ethyl 2-[(2E)-3-(1-naphthyl)-1,2-diazaprop-2-enylidene]-3-phenyl-2,3-dihydro-1,3,4-thiadiazole-5-carboxylate 8a. The IR spectrum of the product revealed bands at 1710 $(\mathrm{CO}), 1618(\mathrm{C}=\mathrm{N})$, and $1583(\mathrm{C}=\mathrm{C})$. Its ${ }^{1} \mathrm{H}$ NMR showed signals at $\delta=1.44(\mathrm{t}, 3 \mathrm{H}), 4.46$ $(\mathrm{q}, 2 \mathrm{H}), 7.25-8.05(\mathrm{~m}, 12 \mathrm{H})$, and $9.05(\mathrm{~s}, 1 \mathrm{H})$. Also, treatment of $\mathbf{4 a}$ with $\mathbf{5 a}$ in ethanolic triethylamine afforded products identical in all respects (mp , mixed mp , and spectra) with 8a. Unequivocal support for the structure of product $\mathbf{8 a}$ was obtained by reaction of the 2-hydrazino-1,3,4-thiadiazoline 11a [7] with 1a, which gave a product identical with 8a (Scheme 1). From the foregoing results, structures 9 and $\mathbf{1 0}$ for the product were excluded.

Two possible pathways can account for the formation of product 8:i) 1,3-addition of the thiol tautomer $\mathbf{3}$ to the nitrilium imide 15a, prepared in situ by treatment of hydrazonoyl chloride 5a
with triethylamine, can give the thiohydrazonate ester 6a, which in turn undergoes nucleophilic cyclization to yield 7a and then 8a by loss of $\mathrm{R}^{1} \mathrm{SH}$; ii) alternatively, 1,3-cycloaddition of the nitrilium imide 15a to the $\mathrm{C}=\mathrm{S}$ double bond of $\mathbf{3 a}$ (or $\mathbf{4 a}$) can give 7a directly (Scheme 1). Similarly, the appropriate hydrazonoyl halides $\mathbf{5 b} \mathbf{- g}$ react with each of the alkyl carbodithioates $\mathbf{3 a}$ and $\mathbf{4 a}$ to afford 2,3-dihydro-1,3,4-thiadiazole derivatives $\mathbf{8 b} \mathbf{- g}$, respectively.

By analogy, treatment of the appropriate hydrazonoyl halides 5a-g with methyl carbodithioates $\mathbf{3 b} \mathbf{- d}$ (or benzyl carbodithioates $\mathbf{4 b} \mathbf{- d}$), prepared from naphthalene-2-carbaldehyde, 1-(1-naphthyl)ethanone, or 1-(2-naphthyl)ethanone 1b-d with either methyl hydrazinecarbodithioate 2a or benzyl hydrazinecarbodithioate 2b, afforded 2,3-dihydro-1,3,4-thiadiazoles 13a-g, 14a-g, respectively (Scheme 1).

Treatment of the naphthalenecarbaldehydes $\mathbf{1 a}, \mathbf{1 b}$ with ethyl (or methyl) 3-oxobutanoate, thiourea, and a catalytic amount of hydrochloric acid in boiling ethanol gave a 3,4-dihydropyrimidine-2 $(1 H)$-thione derivative 16a-c or the isomeric 17a-c (Scheme 2). The structure of the product was assigned as $\mathbf{1 6}$ by ${ }^{1} \mathrm{H}$ NMR analysis and molecular orbital calculations. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 a}$ showed signals at $\delta=1.43(\mathrm{t}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 7.22-7.94(\mathrm{~m}, 7 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H})$ and $9.00(\mathrm{~s}, \mathrm{br} ., 1 \mathrm{H})$. According to molecular orbital calculations, using the HyperChem AM1 semiempirical method, the total energy showed structure $\mathbf{1 6}$ to be the most stable isomer (Scheme 2).

SCHEME 2

Methylation of 16a with methyl iodide in the presence of sodium ethoxide led to the formation of either 18a or its isomeric structure 19a. The structural assignment could again be established for these possible products based on their ${ }^{1} \mathrm{H}$ NMR analysis and molecular orbital calculations (Scheme 2). Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of the product showed signals at $\delta=1.43(\mathrm{t}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 7.22-7.91(\mathrm{~m}, 7 \mathrm{H})$, and $8.71(\mathrm{~s}, 1 \mathrm{H})$. According to molecular orbital calculations, again using the HyperChem AM1 semiempirical method, the total energy showed that structure $\mathbf{1 8}$ is most stable isomer.

Finally, treatment of hydrazonoyl chloride 5a with 16a in boiling chloroform under reflux gave either triazolino[4,3-a]pyrimidine 22a or its isomer 23a (Scheme 3).

$$
\begin{aligned}
\text { 16, } 18 \text { a, } \mathrm{R}^{4} & =\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}=1 \text {-naphthyl } \\
\text { b, } \mathrm{R}^{4} & =\mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{R}=1 \text {-naphthyl } \\
\text { c, } \mathrm{R}^{4} & =\mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{R}=1 \text {-naphthyl }
\end{aligned}
$$

23-25a, $\mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
b, $\mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
c, $\mathrm{R}^{3}=\mathrm{CONHPh}$
d, $\mathbf{R}^{3}=\mathrm{COCH}_{3}$

23-25e, $\mathrm{R}^{3}=\mathrm{COC}_{6} \mathrm{H}_{5}$ $\mathrm{f}, \mathrm{R}^{3}=2-\mathrm{COC}_{4} \mathrm{H}_{3} \mathrm{~S}$ g, $\mathrm{R}^{3}=2-\mathrm{COC}_{10} \mathrm{H}_{7}$

SCHEME 3

In Scheme 3, it is suggested that the reaction of $\mathbf{1 6}$ starts with nucleophilic attack on $\mathrm{N}-1$ or N-3 to give substitution products 20A and 20B. Cyclization of the latter intermediates and elimination of hydrogen sulfide would give the end products $\mathbf{2 2}$ or $\mathbf{2 3}$, respectively. The formation of $\mathbf{2 3}$ is similar to the reaction of 3,4-dihydropyrimidine-2-thione derivatives with halogeno ketones [8] and hydrazonoyl halides [9]. The structure of the product as $\mathbf{2 3}$ was elucidated on the basis of elemental analysis, spectral data, and an alternative synthesis. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of 23a showed signals at $\delta=1.01(\mathrm{t}, 3 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 3.95$ $(\mathrm{q}, 2 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}), 7.25-7.72(\mathrm{~m}, 12 \mathrm{H})$, and $8.024(\mathrm{~s}, 1 \mathrm{H})$. Its IR spectrum revealed bands at 1753 (CO ester), 1689 (CO conjugated), and $1608(\mathrm{C}=\mathrm{N})$. Finally, hydrazonoyl chloride 5a reacted with 18a in boiling ethanolic sodium ethoxide gave a product identical with 23a.

By analogy, ethyl 6-methyl-2-methylthio-4-(1-naphthyl)-3,4-dihydropyrimidine-5carboxylate 18a reacted with the appropriate hydrazonoyl halides $\mathbf{5 b} \mathbf{- g}$ in ethanolic sodium hydroxide solution (or the pyrimidine-2-thione 18a in boiling chloroform containing triethylamine solution), to give triazolino[4,3-a]pyrimidines 23b-g, respectively (Scheme 3). Similarly, treatment of methyl 6-methyl-2-methylthio-4-(1-naphthyl)-3,4-dihydropyrimidine-5-carboxylate 18b, and methyl 6-methyl-2-methylthio-4-(2-naphthyl)-3,4-dihydropyrimidine-5-carboxylate 18c with the appropriate hydrazonoyl halides 5a-g afforded triazolino[4,3-a]pyrimidines 24a-g and 25a-g, respectively (Scheme 3).

2.1 Antimicrobial activity

The tested microorganisms were gram + ve bacteria [Staphylococcus aureus (ATCC25923) and Streptococcus pyrogenes (ATCC19615)] and gram - ve bacteria (Pseudomonas syrinage PV phasealicola). In addition, some fungal pathogens (Aspergillus niger and Fusarium oxysporum) were also tested. Sensitivity of the selected microorganisms to some synthesized compounds was determined in vitro at two concentrations (100, $400 \mu \mathrm{~g} / \mathrm{mL}$) in CHCl_{3}. The tests were carried out using the filter paper and hole plate method [10].

Studies on the biological activity of compounds $\mathbf{8 f}, \mathbf{8 g}, \mathbf{1 3 g}$, and $\mathbf{2 5 b}$ led to the fact that these compounds have moderate biological activity against the tested bacteria, and only weak activity against fungi. Also, it can be observed (Table 1) that compounds 13d,g, 14f,g, and 25e have only a weak effect on bacteria. Compounds 8a, $\mathbf{8 f}, \mathbf{8 g}, \mathbf{1 3 d}, \mathbf{1 4 d}, \mathbf{f}, \mathbf{g}$, and $\mathbf{1 8 g}$ showed weak antifungal activity, but compounds $\mathbf{1 8 b}, \mathbf{2 3 e}, \mathbf{g}$, and $\mathbf{2 5 e}, \mathbf{g}$ showed moderate antifungal activity.

3. Experimental

All melting points were determined on an Electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions on a Varian Gemini 300 MHz spectrometer, and chemical shifts are expressed in δ units using TMS as internal reference. Mass spectra were recorded on a GC-MS QO 1000 EX (Shimadzu). Elemental analyses were carried out at the Microanalytical Center of Cairo University. Hydrazonoyl halides 5 [11-17] were prepared as previously reported.

3.1 Synthesis of alkyl hydrazinecarbodithioates 3a-d and 4a-d. General method

Equimolar amounts of the appropriate naphthalene derivative $\mathbf{1 a}, \mathbf{b}$ and the appropriate alkyl hydrazinecarbodithioate 2a,b [18] (5 mmol each) in propan-2-ol (10 mL) were stirred for 2 h at room temperature. The resulting solid was collected, and crystallized from ethanol to give yellow crystals 3a-d and 4a-d, respectively (Tables 2 and 3).

Table 1. Response of various microorganisms to some synthesized compounds in in vitro culture.

Compound	S.a.	S.p.	P.s.	A.n.	F.o
$\mathbf{8 a}$					W
$\mathbf{8 f}$	M	M		W	W
$\mathbf{8 g}$		M		W	W
$\mathbf{1 3 d}$		W		W	
$\mathbf{1 3 g}$	W	W			
$\mathbf{1 4 f}$	W	W		W	
$\mathbf{1 4 g}$		W		W	
$\mathbf{1 8 b}$					M
$\mathbf{1 8 f}$	W	W			
$\mathbf{1 8 g}$	W	W	M		W
$\mathbf{2 3 b}$		M			
$\mathbf{2 3 e}$		W			M
$\mathbf{2 3 g}$					M
$\mathbf{2 5 b}$		M			
$\mathbf{2 5 e}$		W			M
$\mathbf{2 5 g}$					M

[^2] $(+), \mathrm{M}:$ moderate activity $(6-15 \mathrm{~mm})(++)$.

Table 2. Characterization data of the newly synthesized compounds.

Compound	$\begin{gathered} \mathrm{Mp} /{ }^{\circ} \mathrm{C} \\ \text { (Solvent) } \end{gathered}$	Color Yield (\%)	Mol. Formula (Mol. Wt.)	Elemental analysis [Calcd./Found (\%)]			
				C	H	N	S
3a	158-161	Pale yellow	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$	59.69	4.64	10.75	24.63
	EtOH	90	(260.38)	59.30	4.22	10.45	24.23
3b	197-198	Yellow	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$	59.69	4.64	10.75	24.63
	EtOH	90	(260.38)	59.30	4.22	10.45	24.23
3 c	110-111	Yellow	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$	61.20	5.14	10.20	23.37
	EtOH	90	(274.41)	61.00	5.04	10.00	23.11
3d	167-169	Pale yellow	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$	61.20	5.14	10.20	23.37
	EtOH	90	(274.41)	61.00	5.04	10.00	23.11
4a	179-181	Yellow	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}$	67.82	4.79	8.32	10.05
	AcOH	70	(336.48)	67.50	4.55	8.22	10.00
4b	169-171	White	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}$	67.82	4.79	8.32	10.05
	AcOH	70	(336.48)	67.50	4.55	8.22	10.00
4 c	110-112	Yellow	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$	68.53	5.17	7.99	18.29
	AcOH	60	(350.51)	68.30	5.00	7.63	18.00
4d	136-138	Yellow	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$	68.53	5.17	7.99	18.29
	AcOH	90	(350.51)	68.30	5.00	7.63	18.00
8 a	129-131	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	65.65	4.50	13.92	7.96
	EtOH	90	(402.46)	65.40	4.30	13.60	7.66
8b	149-151	Yellow	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	64.93	4.15	14.42	8.25
	AcOH	90	(388.43)	64.60	4.00	14.12	8.00
8c	233-235	Yellow	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$	69.47	4.26	15.57	7.13
	AcOH	90	(449.52)	69.17	4.00	15.20	7.00
8d	145-147	Yellow	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$	67.72	4.33	15.04	8.60
	EtOH	90	(372.44)	67.50	4.00	15.00	8.30
8 e	170-172	Red	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	72.03	4.18	12.92	7.39
	EtOH	70	(433.51)	72.00	4.11	12.75	7.31
8 f	205-207	Orange	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{2}$	65.43	3.66	12.71	14.55
	AcOH	65	(440.54)	65.23	3.40	12.53	14.30
8 g	185-187	Red	$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	74.36	4.16	11.56	6.61
	AcOH	60	(484.57)	74.30	4.00	11.26	6.45
12a	113-115	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	65.65	4.50	13.92	7.96
	AcOH	90	(402.46)	65.40	4.30	13.60	7.66
12b	140-142	Yellow	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	64.93	4.15	14.42	8.25
	AcOH	90	(388.43)	64.60	4.00	14.12	8.00
12c	204-205	Yellow	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$	69.47	4.26	15.57	7.13
	AcOH	90	(449.52)	69.40	4.12	15.35	7.00
12d	124-126	Orange	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$	67.72	4.33	15.04	8.60
	AcOH	60	(372.44)	67.52	4.15	15.00	8.50
12e	145-147	Orange	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	72.03	4.18	12.92	7.39
	AcOH	70	(433.51)	72.00	4.00	12.80	7.31
12 f	192-194	Orange	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{2}$	65.43	3.66	12.71	14.55
	AcOH	65	(440.54)	65.21	3.40	12.50	14.30
12g	175-176	Orange	$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	74.36	4.16	11.56	6.61
	AcOH	65°	(484.57)	74.00	4.00	11.28	6.45
13a	116-117	Yellow	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	66.33	4.84	13.45	7.69
	AcOH	60	(416.48)	66.20	4.70	13.30	7.60
13b	170-172	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	65.65	4.50	13.92	7.96
	AcOH	65	(402.46)	65.65	4.40	13.80	7.90
13c	213-215	Yellow	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}$	69.95	4.56	15.10	6.91
	AcOH	65	(463.55)	69.80	4.40	15.00	6.81
13d	128-130	Orange	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	68.37	4.69	14.49	8.29
	EtOH	70	(386.47)	68.30	4.60	14.40	8.20
13e	117-119	Orange	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	72.30	7.49	12.49	7.14
	EtOH	75	(448.54)	72.20	7.40	12.40	7.00
13 f	136-138	Orange	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}$	66.05	3.99	12.33	14.10
	EtOH	70	(454.56)	65.90	3.90	12.23	14.00
13g	196-198	Orange	$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}$	74.67	4.44	11.23	6.43
	AcOH	55	(498.60)	74.60	4.30	11.10	6.30

Table 2. Continued.

Compound	$\begin{gathered} \mathrm{Mp} /{ }^{\circ} \mathrm{C} \\ \text { (Solvent) } \end{gathered}$	Color Yield (\%)	Mol. Formula (Mol. Wt.)	Elemental analysis [Calcd./Found (\%)]			
				C	H	N	S
14a	221-222	Yellow	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	66.33	4.84	13.45	7.69
	AcOH	80	(416.48)	66.20	4.70	13.30	7.60
14b	147-148	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	65.65	4.50	13.92	7.96
	AcOH	70	(402.46)	65.60	4.40	13.80	7.75
	218-220	Yellow	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}$	69.95	4.56	15.10	6.91
14c	AcOH	70	(463.55)	69.80	4.40	15.00	6.70
14d	192-194	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	68.37	4.69	14.49	8.29
	EtOH	70	(386.47)	68.20	4.60	14.40	8.00
14e	159-160	Red	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	72.30	7.49	12.49	7.14
	AcOH	80	(448.54)	72.20	7.30	12.40	7.00
14 f	187-189	Orange	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}$	66.05	3.99	12.33	14.10
	AcOH	80	(454.56)	65.90	3.80	12.23	14.00
14g	178-180	Red	$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}$	74.67	4.44	11.23	6.43
	AcOH	80	(498.60)	74.60	4.30	11.10	6.30
16a	224-226	White	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	66.23	5.56	8.58	9.81
	EtOH	70	(326.16)	66.10	5.40	8.50	9.70
16b	252-253	White	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	65.36	5.16	8.96	10.26
	EtOH	70	(312.37)	65.20	5.00	8.90	10.10
16c	255-256	White	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	65.36	5.16	8.96	10.26
	EtOH	80	(312.37)	65.30	5.00	8.90	10.10
18a	212-214	White	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	67.25	5.92	8.23	9.40
	AcOH	70	(340.18)	67.10	5.80	8.10	9.30
18b	240-241	White	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	66.23	5.56	8.58	9.81
	AcOH	70	(326.16)	66.10	5.40	8.50	9.70
18c	250-252	White	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	66.23	5.56	8.58	9.81
	AcOH	75	(326.16)	66.10	5.40	8.50	9.70
23a	137-139	Yellow	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$	69.69	5.42	11.61	
	EtOH	70	(482.52)	69.22	5.15	11.95	
23b	166-168	Yellow	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$	69.50	5.30	11.50	
	EtOH	70	(468.50)	69.00	5.00	11.90	
23c	180-182	Brown	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3}$	72.57	5.13	13.22	
	EtOH	75	(529.56)	72.40	5.00	13.10	
23d	202-204	Yellow	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$	71.66	5.34	12.38	
	EtOH	60	(452.50)	71.50	5.20	12.30	
23e	169-170	Brown	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$	74.69	5.09	10.88	
	AcOH	75	(514.55)	74.60	4.90	10.80	
$23 f$	145-147	Brown	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	69.21	4.64	10.76	6.15
	EtOH	70	(520.57)	69.10	4.50	10.70	6.10
23g	83-85	Black	$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$	76.57	4.99	9.92	
	EtOH	65	(564.67)	76.50	4.90	9.80	
24a	154-156	Yellow	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$	69.22	5.16	11.95	
	EtOH	60	(468.50)	69.00	5.00	11.90	
23b	146-148	Yellow	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$	68.71	4.67	12.32	
	EtOH	70	(454.48)	68.60	4.50	12.30	
24c	177-178	Yellow	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$	72.22	4.88	10.86	
	EtOH	60	(515.54)	72.10	4.80	10.80	
24d	289-291	Brown	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$	71.22	5.05	12.77	
	EtOH	50	(438.48)	71.00	4.90	12.70	
24e	187-189	Yellow	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$	74.38	4.83	11.19	
	EtOH	55	(500.55)	74.20	4.70	11.00	
24 f	260-262	Brown	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	68.76	4.37	11.06	6.33
	EtOH	65	(506.55)	68.60	4.20	11.00	6.20
24g	157-159	Orange	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$	76.35	4.75	10.17	
	EtOH	60	(550.59)	76.20	4.60	10.00	
25a	123-124	Yellow	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$	69.22	5.16	11.95	
	EtOH	70	(468.50)	69.00	5.00	11.90	
23b	130-131	Yellow	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$	68.71	4.67	12.32	
	EtOH	70	(454.48)	68.50	4.70	12.20	

Table 2. Continued.

Compound	$\begin{gathered} \mathrm{Mp} /{ }^{\circ} \mathrm{C} \\ \text { (Solvent) } \end{gathered}$	Color Yield (\%)	Mol. Formula (Mol. Wt.)	Elemental analysis [Calcd./Found (\%)]			
				C	H	N	S
25c	178-180	Yellow	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$	72.22	4.88	10.86	
	EtOH	60	(515.54)	72.00	4.70	10.80	
25d	168-169	Yellow	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$	71.22	5.05	12.77	
	EtOH	65	(438.48)	71.00	4.90	12.70	
25e	158-159	Orange	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$	74.38	4.83	11.19	
	EtOH	65	(500.55)	74.20	4.70	11.00	
$25 f$	230-232	Orange	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	68.76	4.37	11.06	6.33
	EtOH	65	(506.55)	68.60	4.30	11.00	6.20
25g	144-146	Orange	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$	76.35	4.75	10.17	
	EtOH	66	(550.59)	76.20	4.60	10.00	

Table 3. Spectra of some selected synthesized compounds.

Compound	Spectra
3a	${ }^{1} \mathrm{H}$ NMR: $2.00(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.96(\mathrm{~m}, 7 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, and 11.20 (s, br, 1H)
	IR: 3163 (NH), 2916 (CH), $1596(\mathrm{C}=\mathrm{N}$), and 1269 (CS)
3b	${ }^{1} \mathrm{H}$ NMR: $2.00(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.96(\mathrm{~m}, 7 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, and $11.20(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$
	IR: 3163 (NH), $2923(\mathrm{CH}), 1604(\mathrm{C}=\mathrm{N})$, and $1269(\mathrm{CS})$
3c	${ }^{1} \mathrm{H}$ NMR: $2.39(\mathrm{~s}, 2 \mathrm{H}), 2.70$ (s, 3H), 7.50-8.15 (m, 7H), and 10.06 (s, 1H)
	IR: 3163 (NH), 2923 (CH), $1604(\mathrm{C}=\mathrm{N})$, and 1269 (CS)
3d	${ }^{1} \mathrm{H}$ NMR: $2.39(\mathrm{~s}, 2 \mathrm{H}), 2.70$ ($\left.\mathrm{s}, 3 \mathrm{H}\right), 7.50-8.15(\mathrm{~m}, 7 \mathrm{H})$, and 10.06 (s, 1H)
	IR: 3163 (NH), 2923 (CH), $1604(\mathrm{C}=\mathrm{N}$), and 1269 (CS)
4a	${ }^{1} \mathrm{H}$ NMR: 4.63 (s, 2H), 7.26-7.95 (m, 12H), 8.48 (s, 1H), and 15.58 (s, br, 1H)
	IR: $3109(\mathrm{NH}), 2974(\mathrm{CH}), 1596(\mathrm{C}=\mathrm{N})$, and 1238 (CS)
4b	${ }^{1} \mathrm{H}$ NMR: 4.63 (s, 2H), 7.26-7.95 (m, 12H), 8.48 (s, 1H), and 15.58 (s, br, 1H)
	IR: $3109(\mathrm{NH}), 2974(\mathrm{CH}), 1596$ ($\mathrm{C}=\mathrm{N}$), and 1238 (CS)
4c	${ }^{1} \mathrm{H}$ NMR: $2.39(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 3 \mathrm{H}), 7.26-8.09(\mathrm{~m}, 12 \mathrm{H})$, and $10.05(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$
	IR: 3163 (NH), $2904(\mathrm{CH}), 1596(\mathrm{C}=\mathrm{N}$), and 1238 (CS)
4d	${ }^{1} \mathrm{H}$ NMR: $2.39(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 3 \mathrm{H}), 7.26-8.09(\mathrm{~m}, 11 \mathrm{H})$, and $10.05(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$
	IR: 3163 (NH), $2904(\mathrm{CH}), 1596$ (C=N), and 1238 (CS)
8a	${ }^{1} \mathrm{H}$ NMR: $1.44(\mathrm{t}, 3 \mathrm{H}), 4.46(\mathrm{q}, 2 \mathrm{H}), 7.25-8.05(\mathrm{~m}, 11 \mathrm{H})$, and $9.05(\mathrm{~s}, 1 \mathrm{H})$
	IR: $1710(\mathrm{CO}), 1618(\mathrm{C}=\mathrm{N})$, and $1583(\mathrm{C}=\mathrm{C})$
8b	${ }^{1} \mathrm{H}$ NMR: $3.67(\mathrm{~s}, 3 \mathrm{H}), 6.46-7.96(\mathrm{~m}, 12 \mathrm{H})$, and $8.19(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1710 (CO), $1618(\mathrm{C}=\mathrm{N})$, and $1583(\mathrm{C}=\mathrm{C})$
8c	${ }^{1} \mathrm{H}$ NMR: $7.20-7.69(\mathrm{~m}, 10 \mathrm{H}), 7.88-8.05(\mathrm{~m}, 6 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.91(\mathrm{~d}, 1 \mathrm{H})$, and $9.06(\mathrm{~s}, 1 \mathrm{H})$
	IR: $3359(\mathrm{NH}), 1666$ (CO; amide), 1593 ($\mathrm{C}=\mathrm{N}$), and $1531(\mathrm{C}=\mathrm{C})$
8d	${ }^{1} \mathrm{H}$ NMR: $2.64(\mathrm{~s} 3 \mathrm{H}), 7.25-8.07(\mathrm{~m}, 12 \mathrm{H})$, and $9.04(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1681 (CO), $1589(\mathrm{C}=\mathrm{N})$, and $1527(\mathrm{C}=\mathrm{C})$
8e	${ }^{1} \mathrm{H}$ NMR: $7.20-7.69(\mathrm{~m}, 10 \mathrm{H}), 7.88-8.05(\mathrm{~m}, 6 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H})$, and 8.87-8.91 (d, 1 H)
	IR: 1739 (CO), $1589(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$
8 f	${ }^{1} \mathrm{H}$ NMR: $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.44-8.84(\mathrm{~m}, 12 \mathrm{H})$, and $9.04(\mathrm{~s}, 1 \mathrm{H})$
	IR: $1700(\mathrm{CO}), 1585(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$
8g	${ }^{1} \mathrm{H}$ NMR: $7.01-6.96(\mathrm{~m}, 19 \mathrm{H})$, and $8.09(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1620 (CO), $1585(\mathrm{C}=\mathrm{N})$, and $1546(\mathrm{C}=\mathrm{C})$
12a	${ }^{1} \mathrm{H}$ NMR: $1.44(\mathrm{t}, 3 \mathrm{H}), 4.46(\mathrm{q}, 2 \mathrm{H}), 7.25-8.05(\mathrm{~m}, 12 \mathrm{H})$, and $9.05(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1710 (CO), $1608(\mathrm{C}=\mathrm{N})$, and $1546(\mathrm{C}=\mathrm{C})$
12b	${ }^{1} \mathrm{H}$ NMR: $4.01(\mathrm{~s}, 3 \mathrm{H}), 7.25-8.16(\mathrm{~m}, 12 \mathrm{H})$, and $8.86(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1710 (CO), $1608(\mathrm{C}=\mathrm{N})$, and $1577(\mathrm{C}=\mathrm{C})$
12c	${ }^{1} \mathrm{H}$ NMR: 6.91 (s, NH), 7.25-8.05 (m, 17H), and $8.95(\mathrm{~s}, 1 \mathrm{H})$
	IR: 3285 (NH), 1689 (C=O), $1604(\mathrm{C}=\mathrm{N})$, and 1527 ($\mathrm{C}=\mathrm{C}$)
12d	${ }^{1} \mathrm{H}$ NMR: $2.62(\mathrm{~s}, 3 \mathrm{H}), 7.24-8.06(\mathrm{~m}, 12 \mathrm{H})$, and $8.54(\mathrm{~s}, 1 \mathrm{H})$
	IR: $1681(\mathrm{CO}), 1589(\mathrm{C}=\mathrm{N})$, and $1527(\mathrm{C}=\mathrm{C})$
12e	${ }^{1} \mathrm{H}$ NMR: $7.24-8.01(\mathrm{~m}, 17 \mathrm{H})$ and $8.21(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1631 (CO), $1612(\mathrm{C}=\mathrm{N})$, and $1550(\mathrm{C}=\mathrm{C})$
12 f	${ }^{1} \mathrm{H}$ NMR: 7.21-8.12 $(\mathrm{m}, 15 \mathrm{H})$ and $8.34(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1650 (CO), $1585(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$

Table 3. Continued.

Compd.	Spectra
12g	${ }^{1} \mathrm{H}$ NMR: $7.12-8.51(\mathrm{~m}, 19 \mathrm{H})$ and $9.01(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1650 (CO), $1585(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$
13a	${ }^{1} \mathrm{H}$ NMR: $1.60(\mathrm{t}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{q}, 2 \mathrm{H})$, and 7.1-8.4 (m, 12H)
	IR: 1712 (CO), $1598(\mathrm{C}=\mathrm{N})$, and 1573 ($\mathrm{C}=\mathrm{C})$
13b	${ }^{1} \mathrm{H}$ NMR: $2.54(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~s}, 3 \mathrm{H})$, and 7.20-8.19 (m, 12H)
	IR: $1712(\mathrm{CO}), 1598(\mathrm{C}=\mathrm{N})$, and $1573(\mathrm{C}=\mathrm{C})$
13c	${ }^{1} \mathrm{H}$ NMR: $2.59(\mathrm{~s}, 3 \mathrm{H}), 7.19-8.26(\mathrm{~m}, 17 \mathrm{H})$, and 8.46 ($\left.\mathrm{s}, \mathrm{br}, 1 \mathrm{H}\right)$
	IR: 3359 (NH), 1666 (CO), and $1593(\mathrm{C}=\mathrm{N}$)
13d	${ }^{1} \mathrm{H}$ NMR: $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$, and 7.21-8.25 (m, 12H)
	IR: 1670 (CO), $1608(\mathrm{C}=\mathrm{N})$, and 1550 ($\mathrm{C}=\mathrm{C}$)
13e	${ }^{1} \mathrm{H}$ NMR: 2.60 ($\left.\mathrm{s}, 3 \mathrm{H}\right)$ and 6.84-8.30 (m, 17H)
	IR: 1670 (CO), $1608(\mathrm{C}=\mathrm{N})$, and 1550 ($\mathrm{C}=\mathrm{C}$)
13 f	${ }^{1} \mathrm{H}$ NMR: $2.45(\mathrm{~s}, 3 \mathrm{H})$ and 7.06-7.96 (m, 15H)
	IR: 1604 (CO) and $1550(\mathrm{C}=\mathrm{N})$
13g	${ }^{1} \mathrm{H}$ NMR: $2.67(\mathrm{~s}, 3 \mathrm{H}), 7.26-8.30(\mathrm{~m}, 19 \mathrm{H})$ and $9.02(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1660 (CO), $1600(\mathrm{C}=\mathrm{N})$, and 1530 ($\mathrm{C}=\mathrm{C}$)
14a	${ }^{1} \mathrm{H}$ NMR: $1.46(\mathrm{t}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{q}, 2 \mathrm{H})$, and 7.15-8.22 (m, 12H)
	IR: 1712 (CO), $1598(\mathrm{C}=\mathrm{N})$, and 1573 ($\mathrm{C}=\mathrm{C})$
14b	${ }^{1} \mathrm{H}$ NMR: $2.64(\mathrm{~s}, 3 \mathrm{H}), 4.1(\mathrm{~s}, 3 \mathrm{H})$, and 7.15-8.20 (m, 12H)
	IR: 1712 (CO), $1598(\mathrm{C}=\mathrm{N})$, and 1573 ($\mathrm{C}=\mathrm{C}$)
14c	${ }^{1} \mathrm{H}$ NMR: $2.59(\mathrm{~s}, 3 \mathrm{H}), 7.19-8.26(\mathrm{~m}, 17 \mathrm{H})$, and $8.46(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$
	IR: 3200 (NH), $1712(\mathrm{CO}), 1598(\mathrm{C}=\mathrm{N})$, and $1573(\mathrm{C}=\mathrm{C})$
14d	${ }^{1} \mathrm{H}$ NMR: $2.60(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$, and $7.26-8.41(\mathrm{~m}, 12 \mathrm{H})$ Mass: 386 (17.02), 153 (100), 127 (35), 77 (23), and 305 (11.35)
	IR: 1712 (CO), $1598(\mathrm{C}=\mathrm{N})$, and 1573 ($\mathrm{C}=\mathrm{C}$)
14e	${ }^{1} \mathrm{H}$ NMR: 2.60 (s, 3H) and 6.84-8.30 (m, 17H)
	IR: 1631 (CO), $1577(\mathrm{C}=\mathrm{N})$, and 1550 ($\mathrm{C}=\mathrm{C}$)
14 f	${ }^{1} \mathrm{H}$ NMR: $2.45(\mathrm{~s}, 3 \mathrm{H})$ and 7.06-7.96 (m, 15H)
	IR: 1681 (CO), 1593 (C=N), and 1546 (C=C)
14g	${ }^{1} \mathrm{H}$ NMR: 2.64 (s, 3H) and 7.26-8.41 (m, 19H)
	IR: 1681 (CO), $1593(\mathrm{C}=\mathrm{N})$, and $1546(\mathrm{C}=\mathrm{C})$
16a	${ }^{1} \mathrm{H}$ NMR: $1.43(\mathrm{t}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.94(\mathrm{~m}, 7 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H})$, and $9.00(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$
	IR: 3300 (NH), $1700(\mathrm{CO})$, and $1593(\mathrm{C}=\mathrm{C})$
16b	${ }^{1} \mathrm{H}$ NMR: $2.56(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.94(\mathrm{~m}, 7 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, and $8.50(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$ IR: $3220(\mathrm{NH}), 1704(\mathrm{CO})$, and $1595(\mathrm{C}=\mathrm{C})$
16c	${ }^{1} \mathrm{H}$ NMR: $2.61(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 7.31-8.02(\mathrm{~m}, 7 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H})$, and $8.55(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$ IR: $3280(\mathrm{NH}), 1706(\mathrm{CO})$, and $1598(\mathrm{C}=\mathrm{C})$
18a	${ }^{1} \mathrm{H}$ NMR: $1.43(\mathrm{t}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.91(\mathrm{~m}, 7 \mathrm{H})$, and $8.71(\mathrm{~s}, 1 \mathrm{H})$
	IR: 3300 (NH), $1700(\mathrm{CO})$, and $1593(\mathrm{C}=\mathrm{C})$
18b	${ }^{1} \mathrm{H}$ NMR: $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.91(\mathrm{~m}, 7 \mathrm{H})$, and $8.71(\mathrm{~s}, 1 \mathrm{H})$ IR: $3300(\mathrm{NH}), 1700(\mathrm{CO})$, and $1593(\mathrm{C}=\mathrm{C})$
18c	${ }^{1} \mathrm{H}$ NMR: $2.13(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.91(\mathrm{~m}, 7 \mathrm{H})$, and $8.71(\mathrm{~s}, 1 \mathrm{H})$ IR: $3300(\mathrm{NH}), 1700(\mathrm{CO})$, and $1593(\mathrm{C}=\mathrm{C})$
23a	${ }^{1} \mathrm{H}$ NMR: $1.01(\mathrm{t}, 3 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{q}, 2 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}), 7.25-7.72(\mathrm{~m}, 12 \mathrm{H})$, and $8.24(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$
	IR: 1735(CO), 1689 (CO conjugated), and $1608(\mathrm{C}=\mathrm{N}$)
23b	${ }^{1} \mathrm{H}$ NMR: $1.23(\mathrm{t}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{q}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 7.33-7.78(\mathrm{~m}, 12 \mathrm{H})$, and $8.02(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$ IR: 1702 (CO), 1697 (CO conjugated), and $1612(\mathrm{C}=\mathrm{N})$
23c	${ }^{1} \mathrm{H}$ NMR: $1.24(\mathrm{t}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 7.23-8.02(\mathrm{~m}, 17 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H})$, and $8.46(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$ IR: $3394(\mathrm{NH}), 1693(\mathrm{CO})$, and $1600(\mathrm{C}=\mathrm{N})$.
23d	${ }^{1} \mathrm{H}$ NMR: $1.23(\mathrm{t}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 7.32-7.91(\mathrm{~m}, 12 \mathrm{H})$, and $8.21(\mathrm{~s}, 1 \mathrm{H})$ IR: 1697 (CO), $1635(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$
23 e	${ }^{1} \mathrm{H}$ NMR: $1.24(\mathrm{t}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{q}, 2 \mathrm{H}), 7.23-8.11(\mathrm{~m}, 17 \mathrm{H})$, and $8.41(\mathrm{~s}, 1 \mathrm{H})$ IR: 1666 (CO), $1608(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$
23 f	${ }^{1} \mathrm{H}$ NMR: $1.25(\mathrm{t}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, 2 \mathrm{H}), 7.12-8.21(\mathrm{~m}, 15 \mathrm{H})$, and $8.31(\mathrm{~s}, 1 \mathrm{H})$ IR: $1697(\mathrm{CO}), 1635(\mathrm{C}=\mathrm{N})$, and $1535(\mathrm{C}=\mathrm{C})$
23g	${ }^{1} \mathrm{H}$ NMR: $1.22(\mathrm{t}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{q}, 2 \mathrm{H}), 7.23-8.02(\mathrm{~m}, 19 \mathrm{H})$, and $8.42(\mathrm{~s}, 1 \mathrm{H})$ IR: $1685(\mathrm{CO}), 1631(\mathrm{C}=\mathrm{N})$, and $1519(\mathrm{C}=\mathrm{C})$

Table 3. Continued.

Compd.	Spectra
24a	${ }^{1} \mathrm{H}$ NMR: $1.01(\mathrm{t}, 3 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{q}, 2 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}), 7.18-7.92(\mathrm{~m}, 12 \mathrm{H})$, and 8.24 (s, br., 1H)
	IR: 1751 (CO), 1685 (CO-conjugated), and $1608(\mathrm{C}=\mathrm{N})$
24b	${ }^{1} \mathrm{H}$ NMR: $1.12(\mathrm{t}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, 2 \mathrm{H}), 7.16-7.81(\mathrm{~m}, 12 \mathrm{H})$, and $8.02(\mathrm{~s}, \mathrm{br} ., 1 \mathrm{H})$ IR: 1712 (CO), $1697(\mathrm{CO}-$ conjugated), $1604(\mathrm{C}=\mathrm{N})$, and $1539(\mathrm{C}=\mathrm{C})$
24c	${ }^{1} \mathrm{H}$ NMR: $2.53(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, and $7.01-8.21(\mathrm{~m}, 19 \mathrm{H})$
	IR: 3386 (NH), $1689(\mathrm{CO}), 1608(\mathrm{C}=\mathrm{N})$, and $1542(\mathrm{C}=\mathrm{C})$
24d	${ }^{1} \mathrm{H}$ NMR: $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 7.18-8.0$ (m, 12H), and $8.23(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1689 (CO), $1608(\mathrm{C}=\mathrm{N})$, and $1542(\mathrm{C}=\mathrm{C})$
24e	${ }^{1} \mathrm{H}$ NMR: $2.53(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.89(\mathrm{~m}, 12 \mathrm{H})$, and $8.24(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1678 (CO), $1654(\mathrm{C}=\mathrm{N})$, and $1542(\mathrm{C}=\mathrm{C})$
24 f	IR: 1678 (CO), $1631(\mathrm{C}=\mathrm{N})$, and $1608(\mathrm{C}=\mathrm{C})$
24g	${ }^{1} \mathrm{H}$ NMR: $2.65(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 7.41(\mathrm{~m}, 7 \mathrm{H}), 7.6-8.07(\mathrm{~m}, 12 \mathrm{H})$, and $8.19(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1697 (CO), 1654 (C=N), and $1608(\mathrm{C}=\mathrm{C})$
25a	${ }^{1} \mathrm{H}$ NMR: $1.25(\mathrm{t}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{q}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, and $7.25-8.19(\mathrm{~m}, 12 \mathrm{H})$ IR: 1735 (CO), 1697 (CO conjugated), and $1612(\mathrm{C}=\mathrm{N}$)
25b	${ }^{1} \mathrm{H}$ NMR: $2.54(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$, and 7.31-8.21 (m, 12H)
	IR: 1735 (CO-ester), 1697 (CO-conjugated), and 1612 ($\mathrm{C}=\mathrm{N}$)
25c	${ }^{1} \mathrm{H}$ NMR: $2.54(\mathrm{~s}, 3 \mathrm{H}), 3.70$ (s, 3H), $7.01(\mathrm{~s}, 1 \mathrm{H}), 7.21-8.22(\mathrm{~m}, 17 \mathrm{H})$, and $8.31(\mathrm{~s}, 1 \mathrm{H})$
25d	${ }^{1} \mathrm{H}$ NMR: $2.56(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$, and 7.31-8.22 (m, 12H)
25 e	IR: 1660 (CO), $1608(\mathrm{C}=\mathrm{N})$, and $1542(\mathrm{C}=\mathrm{C})$
$25 f$	${ }^{1} \mathrm{H}$ NMR: $2.63(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.34-8.11(\mathrm{~m}, 12 \mathrm{H})$, and $8.23(\mathrm{~s}, 1 \mathrm{H})$
	IR: 1678 (CO), $1654(\mathrm{C}=\mathrm{N})$, and $1542(\mathrm{C}=\mathrm{C})$
25g	${ }^{1} \mathrm{H}$ NMR: $2.65(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, and 7.24-8.52 (m, 20 H)
	IR: 1689 (CO), $1608(\mathrm{C}=\mathrm{N})$, and 1542 ($\mathrm{C}=\mathrm{C}$)

3.2 Synthesis of 2,3-dihydro-1,3,4-thiadiazoles 8, 12-14a-g

A mixture of the appropriate alkyl carbodithioate 3a-d or $\mathbf{4 a - d}$ (5 mmol), the appropriate hydrazonoyl halide 5a-g (5 mmol), and triethylamine ($0.75 \mathrm{~mL}, 0.005 \mathrm{~mol}$) in ethanol (20 mL) was stirred for 2 h at room temperature. The resulting solid was collected and crystallized to give the corresponding 2,3-dihydro-1,3,4-thiadiazole 8, 12-14a-g, respectively (Tables 2 and 3).

3.3 Synthesis of ethyl and methyl 6-methyl-2-methylthio-4-(1- or 2-naphthyl)-1,6-dihydropyrimidine-5-carboxylates 18a-c. General method

Methyl iodide ($0.71 \mathrm{~g}, 5 \mathrm{mmol}$) was added dropwise to a solution of the appropriate pyrimidine-2-thione derivative 16a-c in ethanolic sodium ethoxide ($5 \mathrm{mmol} ; 20 \mathrm{~mL}$) and stirring was continued at room temperature for 3 h . The resulting solid was collected and crystallized to give the corresponding sulfide 18a-c, respectively (Tables 2 and 3).

3.4 Synthesis of triazolo[4,3-a]pyrimidines derivatives 23-25a-g

3.4.1 Method A. Equimolar amounts of the appropriate hydrazonoyl halide 5a-g and the appropriate pyrimidine-2-thione derivative 16a-c, together with triethylamine (5 mmol each) in chloroform (20 mL), were boiled under reflux for 10 h . The chloroform was evaporated off under reduced pressure and the resulting solid was collected and crystallized to give the corresponding triazolo[4,3- a]pyrimidine derivative 23-25a-g, respectively (Tables 2 and 3).
3.4.2 Method B. A mixture of the appropriate hydrazonoyl halide 5a-g, the appropriate derivative 18a-c, and triethylamine (5 mmol each) in ethanol (20 mL) was boiled under reflux for 3 h . The resulting solid was collected, and crystallized from ethanol to give the corresponding triazolo[4,3-a]pyrimidine derivative 23-25a-g, respectively (Tables 2 and 3).

3.5 Synthesis of ethyl or methyl 4-methyl-6-(1- or 2-naphthyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 16a-c. General method

A mixture of the appropriate naphthalene-1-carbaldehyde 1a or naphthalene-2-carbaldehyde $\mathbf{1 b}$, the appropriate ethyl acetoacetate (or methyl acetoacetate), and thiourea (5 mmol each) was refluxed in ethanol (40 mL) containing hydrochloric acid $(1 \mathrm{~mL} ; 12 \mathrm{M})$ for 6 h . The reaction mixture was left overnight and the resulting solid was collected, and crystallized from ethanol to give the corresponding thione 16a-c, respectively (Tables 2 and 3).

References

[1] Part 45: A.O. Abdelhamid, A.A. Al-Atoom. Phosphorus, Sulfur, Silicon Relat. Elem., in press (2004).
[2] A. Albert, S. Rubbo, N. Burvill. Exp. Pathol., 30, 159 (1949).
[3] S. Akia. Exp. Med., 26, 91 (1956).
[4] P. William, J. Utermohlen, C. Hamilton. J. Am. Chem. Soc., 63, 156 (1941).
[5] M. Abe, K. Miraki, D. Zyiazunc, N. Nokita, I. Tazeuchi, T. Utkita, T. Yamamoto. J. Med. Sci. Biol., 12, 175 (1959).
[6] J.E. Franz, O.P. Dhingra. In Comprehensive Heterocyclic Chemistry, A.R. Katritzky, C.W. Rees (Eds), Vol. 6, p. 509, Pergamon Press, (1984).
[7] A.O. Abdelhamid, S.M. Abdelgawad, S.F. El-Shrarnoby. Phosphorus, Sulfur, Silicon Relat. Elem., 177, 2699 (2002).
[8] S.M. Sherif, M.M. Youssef, K.M. Mobarak, A.M. Abdel-fattah. Tetrahedron, 42, 9561 (1993).
[9] T.A. Abdallah, M.A. Darwish, H.M. Hassaneen. Molecules, 7, 494 (2000).
[10] C. Lefert, H. Siripumchidbouree, S. Hampsons, S. Workman, D. Sigee, H.A.S. Epton, A. Harbaur. J. Appl. Bacteriol., 78, 97 (1955).
[11] G. Fravel. Bull. Soc. Chim. Fr., 31, 150 (1904).
[12] N.E. Ewiss, A. Osman. Tetrahedron Lett., 1169 (1979).
[13] A.S. Shawali, A. Osman. Tetrahedron, 27, 2517 (1972).
[14] A.S. Shawali, A.O. Abdelhamid. Bull. Chem. Soc. Jpn., 49, 321 (1976).
[15] A.O. Abdelhamid, F.A. Ataby. Sulfur Lett., 7, 239 (1988).
[16] H.M. Hassaneen, A.S. Shawali, N.M. Elwan, N.M. Abdouhada. Sulfur Lett., 14, 41 (1992).
[17] R.H. Wiley, G.H. Garboe. J. Am. Chem. Soc., 78, 624 (1956).
[18] D.L. Klayman, J.F. Bartosevich, T.S. Grifin, C.J. Mason, J.P. Scovill. J. Med. Chem., 22, 855 (1979).

[^0]: Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
 This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

 The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

[^1]: *Corresponding author. Email: abdou_abdelhamid@yahoo.com

[^2]: Diameter of the zone of inhibition: W: low activity ($3-5 \mathrm{~mm}$)

